Abstract
To elucidate the applicability and properties of ionic liquids (ILs) to serve as chemical reaction media for the activation of small molecules by transition-metal complexes, detailed kinetic and mechanistic studies were performed on the reversible binding of NO to FeCl(2) dissolved in the IL 1-ethyl-3-methylimidazolium dicyanamide ([emim][dca]) as a solvent. We report, for the first time, the application of laser flash photolysis at ambient and high pressure to study the kinetics of this reaction in an IL. The kinetic data and activation parameters for the "on" and "off" reactions suggest that both processes follow a limiting dissociative (D) ligand substitution mechanism, in contrast to that reported for the same reaction in aqueous solution, where this well-known "brown-ring" reaction follows an interchange dissociative (I(d)) ligand substitution mechanism. The observed difference apparently arises from the participation of the IL anion as a N-donor ligand, as evidenced by the formation of polymeric [Fe(dca)(3)Cl](x)[emim](2x) chains in the solid state and verified by X-ray crystallography. In addition, infrared (IR), Mössbauer, and EPR spectra were recorded for the monomeric reaction product [Fe(dca)(5)NO](3-) formed in the IL, and the parameters closely resemble those of the {FeNO}(7) unit in other well-characterized nitrosyl complexes. It is concluded that its electronic structure is best described by the presence of a high-spin Fe(III) (S = 5/2) center antiferromagnetically coupled to NO(-) (S = 1), yielding the observed spin quartet ground state (S(t) = 3/2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.