Abstract
Recently, there has been an increasing interest in the study of hypercomplex signals and their Fourier transforms. This paper aims to study such integral transforms from general principles, using 4 different yet equivalent definitions of the classical Fourier transform. This is applied to the so-called Clifford-Fourier transform (see [F. Brackx et al., The Clifford-Fourier transform. J. Fourier Anal. Appl. 11 (2005), 669--681]). The integral kernel of this transform is a particular solution of a system of PDEs in a Clifford algebra, but is, contrary to the classical Fourier transform, not the unique solution. Here we determine an entire class of solutions of this system of PDEs, under certain constraints. For each solution, series expressions in terms of Gegenbauer polynomials and Bessel functions are obtained. This allows to compute explicitly the eigenvalues of the associated integral transforms. In the even-dimensional case, this also yields the inverse transform for each of the solutions. Finally, several properties of the entire class of solutions are proven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.