Abstract

Dense molecular jets cutting through dense molecular clouds are simulated here using a ZEUS-type hydrodynamics code extended with molecular physics. H2 ‘hot snapshots’ and CO ‘historical views’ are nicely modelled with overdense uniform jets. Attention is drawn to some remaining hot problems: observed jet knots are bow shaped, bipolar outflows can be highly asymmetric, some proper motions within jets are enigmatically low and H2 excitation can be exceedingly uniform.We present the Hammer Jet, in which the nozzle introduces high velocity variations, as well as a strong ripping and spray action. Prominent jet bow shocks in H2 and CO emission lines are then produced. Wide tubular CO structures with concave bases show up. Proper motions are simulated. The asymmetries are modelled by jet break-out from a molecular core into a diffuse atomic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.