Abstract

The PD measure of phylogenetic diversity interprets branch lengths cladistically to make inferences about feature diversity. PD calculations extend conventional species-level ecological indices to the features level. The “phylogenetic beta diversity” framework developed by microbial ecologists calculates PD-dissimilarities between community localities. Interpretation of these PD-dissimilarities at the feature level explains the framework’s success in producing ordinations revealing environmental gradients. An example gradients space using PD-dissimilarities illustrates how evolutionary features form unimodal response patterns to gradients. This features model supports new application of existing species-level methods that are robust to unimodal responses, plus novel applications relating to climate change, commercial products discovery, and community assembly.

Highlights

  • Cladistic analyses are based on a well-known assumption about the relationship between features and phylogenetic pattern: shared ancestry can account for shared features among taxa

  • Our rationale is that: (1) based on the underlying cladistic model, PD-dissimilarities approximate the quantities we would get if we could directly calculate dissimilarities using evolutionary features, (2) evolutionary features in turn can be linked, by a simple “unimodal response” model, to environmental gradients, and (3) PDdissimilarities relate to unimodal response of features in the same way that conventional robust dissimilarities relate to unimodal response of species - allowing phylogenetic application of the existing robust analysis methods for inferring environmental gradients

  • This means that evolutionary features, including those represented by non-terminal phylogenetic branches, would have general unimodal responses to gradients (Figure 2b)

Read more

Summary

Introduction

Cladistic analyses are based on a well-known assumption about the relationship between features (character states) and phylogenetic pattern: shared ancestry can account for shared features among taxa. That fundamental model is a basis for inference of phylogeny from observed character data for a set of taxa. Cladistic parsimony methods prefer trees that maximize this particular explanation of character variation; most-parsimonious trees equivalently minimize the sum of branch “lengths” that count character state changes. This inference of phylogenetic trees from characters is well-established, but this same cladistic model means that we can “work backwards”. We extend PD’s cladistic interpretation of phylogenetic branches as a proxy for evolutionary features. We will show how interpretation of these PD-dissimilarities at the level of features provides a model that justifies the microbial approach and points to new applications

Microbial Ecology and PD-Dissimilarities
The Unimodal Response Model for Evolutionary Features
Some Implications for Choice of Methods Used to Explore Patterns of Diversity
Extending Phylogenetic Beta Diversity Applications
The Search for New Commercial Products
Monitoring Human Impacts
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.