Abstract

The Cabibbo–Kobayashi–Maskawa (CKM) matrix is a key element in describing flavor dynamics in the Standard Model. With only four parameters, this matrix is able to describe a large range of phenomena in the quark sector, such as [Formula: see text] violation and rare decays. It can thus be constrained by many different processes, which have to be measured experimentally with high accuracy and computed with good theoretical control. Recently, with the advent of the [Formula: see text] factories and the LHCb experiment taking data, the precision has significantly improved. We review the most relevant experimental constraints and theoretical inputs and present fits to the CKM matrix for the Standard Model and for some topical model-independent studies of New Physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.