Abstract

We generalize the SiZer of Chaudhuri and Marron (J. Amer. Statist. Assoc. 94 (1999) 807-823, Ann. Statist. 28 (2000) 408-428) for the detection of shape parameters of densities on the real line to the case of circular data. It turns out that only the wrapped Gaussian kernel gives a symmetric, strongly Lipschitz semi-group satisfying "circular" causality, that is, not introducing possibly artificial modes with increasing levels of smoothing. Some notable differences between Euclidean and circular scale space theory are highlighted. Based on this, we provide an asymptotic theory to make inference about the persistence of shape features. The resulting circular mode persistence diagram is applied to the analysis of early mechanically-induced differentiation in adult human stem cells from their actin-myosin filament structure. As a consequence, the circular SiZer based on the wrapped Gaussian kernel (WiZer) allows the verification at a controlled error level of the observation reported by Zemel et al. (Nat. Phys. 6 (2010) 468-473): Within early stem cell differentiation, polarizations of stem cells exhibit preferred directions in three different micro-environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.