Abstract

IntroductionCircular RNAs (circRNAs) have recently been described as novel noncoding regulators of gene expression. They might have an impact on microRNA expression by their sponging activity. The detectability in blood of these RNA transcripts has been demonstrated in patients with cancer and cardiovascular disease. We tested the hypothesis that circulating circRNAs in blood of critically ill patients with acute kidney injury (AKI) at inception of renal replacement therapy may also be dysregulated and associated with patient survival.MethodsWe performed a global circRNA expression analysis using RNA isolated from blood of patients with AKI as well as controls. This global screen revealed several dysregulated circRNAs in patients with AKI. Most highly increased circRNA-array−based transcripts as well as expression of the circRNA target miR-126-5p were confirmed in blood of 109 patients with AKI, 30 age-matched healthy controls, 25 critically ill non-AKI patients, and 20 patients on maintenance hemodialysis by quantitative real-time polymerase chain reaction.ResultsCirculating concentrations of 3 novel circRNAs were amplified in blood of patients with AKI and in controls. Circular RNA sponge of miR-126 (or ciRs-126) was most highly altered compared to healthy controls and disease controls (fold change of 52.1). ciRs-126 was shown to bioinformatically sponge miR-126-5p, which was found to be highly suppressed in AKI patients and hypoxic endothelial cells. Cox regression and Kaplan−Meier curve analysis revealed ciRs-126 as an independent predictor of 28-day survival (P < 0.01).ConclusionCirculating concentrations of circRNAs in patients with AKI are detectable. ciRs-126 may potentially sponge miR-126-5p and acts as a predictor of mortality in this patient cohort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.