Abstract
BackgroundCircular RNAs (circRNAs) belong to a class of covalently closed single stranded RNAs that have been implicated in cancer progression. Former investigations showed that hsa-circ-0013561 is abnormally expressed in head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of hsa-circ-0013561 during the progress of HNSCC still unclear.MethodsPresent study applied FISH and qRT-PCR to examine hsa-circ-0013561 expression in HNSCC cells and tissue samples. Dual-luciferase reporter assay was employed to identify downstream targets of hsa-circ-0013561. Transwell migration, 5-ethynyl-2′-deoxyuridine incorporation, CCK8 and colony formation assays were utilized to test cell migration and proliferation. A mouse tumor xenograft model was utilized to determine the hsa-circ-0013561 roles in HNSCC progression and metastasis in vivo.ResultsWe found that hsa-circ-0013561 was upregulated in HNSCC tissue samples. hsa-circ-0013561 downregulation inhibited HNSCC cell proliferation and migration to promote apoptosis and G1 cell cycle arrest. The dual-luciferase reporter assay revealed that miR-7-5p and PDK3 are hsa-circ-0013561 downstream targets. PDK3 overexpression or miR-7-5p suppression reversed the hsa-circ-0013561-induced silencing effects on HNSCC cell proliferation and migration. PDK3 overexpression reversed miR-7-5p-induced effects on HNSCC cell proliferation and migration.ConclusionThe findings suggest that hsa-circ-0013561 downregulation inhibits HNSCC metastasis and progression through PDK3 expression and miR-7-5p binding modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.