Abstract

BackgroundmiR-491-5p has been reported to regulate the expression of FGFR4 and promote gastric cancer metastasis. Hsa_circ_0001361 was demonstrated to play an oncogenic role in bladder cancer invasion and metastasis by sponging the expression of miR-491-5p. This work aimed to study the molecular mechanism of the effect of hsa_circ_0001361 on axillary response in the treatment of breast cancer. MethodsUltrasound examinations was performed to evaluate the response of breast cancer patients receiving NAC treatment. Quantitative real-time PCR, IHC assay, luciferase assay and Western blot were performed to analyze the molecular interaction between miR-491, circRNA_0001631 and FGFR4. ResultsPatients with low circRNA_0001631 expression had a better outcome after NAC treatment. The expression of miR-491 was remarkably higher in the tissue sample and serum collected from patients with lower circRNA_0001631 expression. On the contrary, the FGFR4 expression was notably suppressed in the tissue sample and serum collected from patients with lower circRNA_0001631 expression when compared with patients with high circRNA_0001631 expression. The luciferase activities of circRNA_0001631 and FGFR4 were effectively suppressed by miR-491 in MCF-7 and MDA-MB-231 cells. Moreover, inhibition of circRNA_0001631 expression using circRNA_0001361 shRNA effectively suppressed the expression of FGFR4 protein in MCF-7 and MDA-MB-231 cells. Up-regulation of circRNA_0001631 expression remarkably enhanced the expression of FGFR4 protein in MCF-7 and MDA-MB-231 cells. ConclusionOur study suggested that the up-regulation of hsa_circRNA-0001361 could up-regulate the expression of FGFR4 via sponging the expression of miR-491-5p, resulting in the alleviated axillary response after neoadjuvant chemotherapy (NAC) in breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call