Abstract
During the light phase of a light/dark cycle, dendrites of teleost cone horizontal cells display numerous finger-like projections, called spinules, which are formed at dawn and degraded at dusk, and are thought to be involved in chromatic feedback processes. We have studied the oscillations of these spinules during a normal light/dark cycle and during 48 h of constant darkness in two groups of strongly rhythmic, diurnal fish, Aequidens pulcher. In one group the retinal dopaminergic system had been destroyed by the application of 6-OHDA, while in the other (control) group, the dopaminergic system was intact. In control fish, oscillations of spinule numbers were observed under both normal and constant dark conditions, indicating the presence of a robust circadian rhythm. However, spinule dynamics were severely affected by the absence of retinal dopamine. During the normal light phase, the number of spinules in 6-OHDA injected retinae was strongly reduced, and throughout continual darkness, spinule formation was almost completely suppressed. These results indicate that dopamine is essential for both light-evoked and circadian spinule formation; furthermore, we conclude that there is no circadian oscillator within horizontal cells controlling the formation of spinules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.