Abstract

Biological processes throughout the body are orchestrated in time through the regulation of local circadian clocks. The retina is among the most metabolically active tissues, with demands depending greatly on the light/dark cycle. Most cell types within the retina are known to express the circadian clock in rodents; however, retinal clock expression in the human has not previously been localized. Moreover, the effect of local circadian clock dysfunction on retinal homeostasis is incompletely understood. We demonstrate an age-dependent decline in circadian clock gene and protein expression in the human retina. Using an animal model of targeted Bmal1 deficiency, we identify the circadian clock of the retinal Müller glia as essential for neuronal survival, vascular integrity, and retinal function. These results suggest a potential role for the local retinal circadian clock within the Müller glia in age-related retinal disease and retinal degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.