Abstract
Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.