Abstract

BackgroundCartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1). We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. One extract, derived from cat's claw (Uncaria guianensis, vincaria®), is a well-described inhibitor of NF-κB. The other extract, derived from the vegetable Lepidium meyenii (RNI 249), possessed an uncertain mechanism of action but with defined ethnomedical applications for fertility and vitality.MethodsHuman cartilage samples were procured from surgical specimens with consent, and were evaluated either as explants or as primary chondrocytes prepared after enzymatic digestion of cartilage matrix. Assessments included IGF-1 gene expression, IGF-1 production (ELISA), cartilage matrix degradation and nitric oxide (NO) production, under basal conditions and in the presence of IL-1β.ResultsRNI 249 enhanced basal IGF-1 mRNA levels in human chondrocytes by 2.7 fold, an effect that was further enhanced to 3.8 fold by co-administration with vincaria. Enhanced basal IGF-1 production by RNI 249 alone and together with vincaria, was confirmed in both explants and in primary chondrocytes (P <0.05). As expected, IL-1β exposure completely silenced IGF-1 production by chondrocytes. However, in the presence of IL-1β both RNI 249 and vincaria protected IGF-1 production in an additive manner (P <0.01) with the combination restoring chondrocyte IGF-1 production to normal levels. Cartilage NO production was dramatically enhanced by IL-1β. Both vincaria and RNI 249 partially attenuated NO production in an additive manner (p < 0.05). IL-1β – induced degradation of cartilage matrix was quantified as glycosaminoglycan release. Individually RNI 249 or vincaria, prevented this catabolic action of IL-1β.ConclusionThe identification of agents that activate the autocrine production of IGF-1 in cartilage, even in the face of suppressive pro-inflammatory, catabolic cytokines like IL-1β, represents a novel therapeutic approach to cartilage biology. Chondroprotection associated with prevention of the catabolic events and the potential for sustained anabolic activity with this natural product suggests that it holds significant promise in the treatment of debilitating joint diseases.

Highlights

  • Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1)

  • The COX-2 specific class of NSAIDs has revealed an increase in the risk for cardiovascular and heart disease [5,6], their design was an attempt to reduce complications associated with non-specific COX inhibitors [7]

  • IGF-1 expression and production by human cartilage Direct activation of IGF-1 gene expression was evaluated in primary cultures of human chondrocytes by real time RT-PCR

Read more

Summary

Introduction

Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1). We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. It is well appreciated that cartilage destruction can proceed unabated despite suppression of inflammation [4]. To this dilemma, the COX-2 specific class of NSAIDs has revealed an increase in the risk for cardiovascular and heart disease [5,6], their design was an attempt to reduce complications associated with non-specific COX inhibitors [7]. The quest to develop new therapeutic entities has taken on greater impetus and yet additional uncertainty

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call