Abstract

Warburgia ugandensis and Saururus chinensis are two of the most important medicinal plants in magnoliids and are widely utilized in traditional Kenya and Chinese medicine, respectively. The absence of higher-quality reference genomes has hindered research on the medicinal compound biosynthesis mechanisms of these plants. We report the chromosome-level genome assemblies of W. ugandensis and S. chinensis, and generated 1.13 Gb and 0.53 Gb genomes from 74 and 27 scaffolds, respectively, using BGI-DIPSEQ, Nanopore, and Hi-C sequencing. The scaffold N50 lengths were 82.97 Mb and 48.53 Mb, and the assemblies were anchored to 14 and 11 chromosomes of W. ugandensis and S. chinensis, respectively. In total, 24,739 and 20,561 genes were annotated, and 98.5% and 98% of the BUSCO genes were fully represented, respectively. The chromosome-level genomes of W. ugandensis and S. chinensis will be valuable resources for understanding the genetics of these medicinal plants, studying the evolution of magnoliids and angiosperms and conserving plant genetic resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.