Abstract

Karyotypic changes in chromosome number and structure are drivers in the divergent evolution of diverse plant species and lineages. This study aimed to reveal the origins of the unique karyotype (2n=12) and phylogenetic relationships of the genus Megadenia (Brassicaceae). A high-quality chromosome-scale genome was assembled for Megadenia pygmaea using Nanopore long reads and high-throughput chromosome conformation capture (Hi-C). The assembled genome is 215.2Mb and is anchored on six pseudochromosomes. We annotated a total of 25,607 high-confidence protein-coding genes and corroborated the phylogenetic affinity of Megadenia with the Brassicaceae expanded lineage II, containing numerous agricultural crops. We dated the divergence of Megadenia from its closest relatives to 27.04 (19.11-36.60) million years ago. A reconstruction of the chromosomal composition of the species was performed based on the de novo assembled genome and comparative chromosome painting analysis. The karyotype structure of M. pygmaea is very similar to the previously inferred proto-Calepineae karyotype (PCK; n=7) of the lineage II. However, an end-to-end translocation between two ancestral chromosomes reduced the chromosome number from n=7 to n=6 in Megadenia. Our reference genome provides fundamental information for karyotypic evolution and evolutionary study of this genus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.