Abstract

The ATP-dependent chromatin-remodeling enzyme brahma-related gene 1 (BRG1) regulates transcription of specific target genes during embryonic and postnatal development. Deletion of Brg1 from embryonic blood vessels results in yolk sac vascular remodeling defects. We now report that misregulation of the canonical Wnt signaling pathway underlies many Brg1 mutant vascular phenotypes. Brg1 deletion resulted in down-regulation of several Wnt receptors of the frizzled family, degradation of the intracellular Wnt signaling molecule β-catenin, and an overall decrease in Wnt signaling in endothelial cells. Pharmacological stabilization of β-catenin significantly rescued Brg1 mutant vessel morphology and transcription of Wnt target genes. Our data demonstrate that BRG1 impacts the canonical Wnt pathway at two different levels in vascular endothelium: through transcriptional regulation of both Wnt receptor genes and Wnt target genes. These findings establish an epigenetic mechanism for the modulation of Wnt signaling during embryonic vascular development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.