Abstract

We consider proper, algebraic semismall maps f from a complex algebraic manifold X. We show that the topological Decomposition Theorem implies a decomposition theorem for the rational algebraic cycles of X and, in the case X is compact, for the Chow motive of X.The result is a Chow-theoretic analogue of Borho-MacPherson's observation concerning the cohomology of the fibers and their relation to the relevant strata for f. Under suitable assumptions on the stratification, we prove an explicit version of the motivic decomposition theorem. The assumptions are fulfilled in many cases of interest, e.g. in connection with resolutions of orbifolds and of some configuration spaces. We compute the Chow motives and groups in some of these cases, e.g. the nested Hilbert schemes of points of a surface. In an appendix with T. Mochizuki, we do the same for the parabolic Hilbert scheme of points on a surface. The results above hold for mixed Hodge structures and explain, in some cases, the equality between orbifold Betti/Hodge numbers and ordinary Betti/Hodge numbers for the crepant semismall resolutions in terms of the existence of a natural map of mixed Hodge structures. Most results hold over an algebraically closed field and in the Kaehler context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.