Abstract

Since reionization prevents star formation in most halos below 3 x 10^9 solar masses, dwarf galaxies only populate a fraction of existing dark matter halos. We use hydrodynamic cosmological simulations of the Local Group to study the discriminating factors for galaxy formation in the early Universe and connect them to the present-day properties of galaxies and halos. A combination of selection effects related to reionization, and the subsequent evolution of halos in different environments, introduces strong biases between the population of halos that host dwarf galaxies, and the total halo population. Halos that host galaxies formed earlier and are more concentrated. In addition, halos more affected by tidal stripping are more likely to host a galaxy for a given mass or maximum circular velocity, vmax, today. Consequently, satellite halos are populated more frequently than field halos, and satellite halos of 10^8 - 10^9 solar masses or vmax of 12 - 20 km/s, similar to the Local Group dwarf spheroidals, have experienced a greater than average reduction in both mass and vmax after infall. They are on closer, more radial orbits with higher infall velocities and earlier infall times. Together, these effects make dwarf galaxies highly biased tracers of the underlying dark matter distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.