Abstract

ABSTRACT In flies of the subfamily Muscinae the egg-shell has both an outer and an inner meshwork layer, each of which holds a continuous film of air. Between these two meshwork layers there is a more or less thick middle layer to which the shell chiefly owes its mechanical strength. Holes or aeropyles through the middle layer effect the continuity of the outer and inner films of air. Both meshwork layers consist of struts that arise perpendicularly from the middle layer. In both layers the struts are branched at their apices in a plane normal to their long axes. These horizontal branches form a fine and open hydrofuge network that provides a large water-air interface when the egg is immersed. When it rains or when the egg is otherwise immersed in water, the film of air held in the outer meshwork layer of the shell functions as a plastron. To be an efficient respiratory structure a plastron must resist wetting by both the hydrostatic pressures and the surface active materials to which it is normally exposed. The plastrons of all the Muscinae tested resist wetting in clean water by pressures far in excess of any they are likely to encounter in nature. The resistance of a plastron to hydrostatic pressures varies directly as the surface tension of the water, and the surface tension of water in contact with the decomposing materials in which the Muscinae lay their eggs is much lowered by surface active materials. These considerations seem to provide an explanation for the great resistance of the plastron of the Muscinae to wetting by excess pressures and for the paradox that the plastrons of these terrestrial eggs are more resistant to high pressures than are the plastrons of some aquatic insects that live in clean water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call