Abstract

Niemann–Pick C (NPC) disease is a lethal neurodegenerative disorder affecting cellular sterol trafficking. Besides neurodegeneration, NPC patients also exhibit other pleiotropic conditions, indicating that NPC protein is required for other physiological processes. Previous studies indicated that a sterol shortage that in turn leads to a shortage of steroid hormones (for example, ecdysone in Drosophila) is likely to be the cause of NPC disease pathology. We have shown that mutations in Drosophila npc1, one of the two NPC disease-related genes, leads to larval lethal and male infertility. Here, we reported that npc1 mutants are defective in spermatogenesis and in particular in the membrane-remodeling individualization process. Interestingly, we found that ecdysone, the steroid hormone responsible for the larval lethal phenotype in npc1 mutants, is not required for individualization. However, supplying 7-dehydrocholesterol can partially rescue the male infertility of npc1 mutants, suggesting that a sterol shortage is responsible for the spermatogenesis defects. In addition, the individualization defects of npc1 mutants were enhanced at high temperature, suggesting that the sterol shortage may lead to temperature-sensitive defects in the membrane-remodeling process. Together, our study reveals a sterol-dependent, ecdysone-independent mechanism of NPC1 function in Drosophila spermatogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.