Abstract

A generalization of the Choi–Jamiołkowski isomorphism for completely positive maps between operator algebras is introduced. Particular emphasis is placed on the case of normal unital completely positive maps defined between von Neumann algebras. This generalization is applied especially to the study of maps which are covariant under actions of a symmetry group. We highlight with the example of, e.g., phase-shift-covariant quantum channels, the ease of this method in particular in the case of a compact symmetry group. We also discuss the case of channels which are covariant under actions of the Euclidean group of rigid motions in three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.