Abstract

Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.

Highlights

  • The genus Solanum L., with approximately 1,400 species, is one of the largest genera of angiosperms, and includes many major and minor food crops such as tomato, potato, eggplant, and pepino

  • We examined the phylogenetic distribution of structural changes using the tree constructed with parsimony and maximum likelihood (ML) methods implemented in the ancestral state reconstruction tools of Mesquite 3.2 [54]

  • As a first step quality filtered reads were mapped to Solanaceae reference genomes, which resulted in an entire contig showing good agreement with published genome sequences

Read more

Summary

Introduction

The genus Solanum L., with approximately 1,400 species, is one of the largest genera of angiosperms, and includes many major and minor food crops such as tomato, potato, eggplant, and pepino. It was introduced to North America possibly for its medicinal properties [1] It is still used as a source of various alkaloids with diuretic, diaphoretic properties to treat rheumatism and skin diseases in Asia and India [2, 3]. This semi-woody perennial vine is easy to recognize (Fig 1). Previous treatments placed Solanum dulcamara to sect.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call