Abstract

Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.

Highlights

  • Carnivorous plants from the genus Utricularia (Lentibulariaceae) are distributed worldwide and are comprised of approximately 235 species occurring across every continent except the poles, some arid regions and oceanic islands [1]

  • A total of 1,029,442 (81.7%) paired-reads were assembled to the U. reniformis cp contigs

  • This study revealed that the 139kbp cp genome of U. reniformis is quite similar to the cp genome of U. gibba, U. macrorhiza, G. aurea, and P. ehlersiae in terms of gene synteny, repeats and cpSSRs content; whereas the main differences are located on the small single copy (SSC) region and the ndh genes repertoire (Figs 3 and 5 and Tables 1, 2, 5 and 6)

Read more

Summary

Introduction

Carnivorous plants from the genus Utricularia (Lentibulariaceae) are distributed worldwide and are comprised of approximately 235 species occurring across every continent except the poles, some arid regions and oceanic islands [1]. They are highly specialized plants with modified leaves (traps) for capturing prey [2,3], and there are diverse life forms, such as aquatic, terrestrial, epiphytic, and reophytic forms [1]. Angiosperms present extremes in genome sizes, from around 61 Mb of Genlisea to 150,000 Mb of one of the largest plant genomes known, the monocot Paris japonica [5,6]. It is well known that polyploidy, the amount of repetitive DNA such as transposable elements and other repeats, and whole genome duplications (WGD), along with other mechanisms such as small-scale genome duplications or fractionation/gene death rates are the key drivers of genome size differences [6,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call