Abstract

Chlorophyll fluorescence is an information-rich signal which provides an access to the management of light absorbed by PSII. A good example of this is the succession of fast fluorescence fluctuations during light-induced photosynthetic induction after dark-adaptation. During this period, the fluorescence trace exhibits several inflexion points: O-J-I-P-S-M-T. Whereas the OJIP part of this kinetics has been the subject of many studies, the processes that underly the PSMT transient are less understood. Here, we report an analysis of the PSMT phase in the green microalga Haematococcus pluvialis in terms of electron acceptors and light use by photochemistry, fluorescence and non-photochemical quenching (NPQ). We identify additional sub-phases between P and S delimited by an inflexion point, that we name Q, found in the second time scale. The P-Q phase expresses a transient photochemical quenching specifically due to alternative electron transport to oxygen. During the transition from Q to S, the NPQ increases and then relaxes during the S-M phase in about 1min. It is suggested that this transient NPQ observed during induction is a high energy state quenching (qE) dependent on the alternative electron transport to molecular oxygen. We further show that this NPQ is of the same nature than the NPQ, known as the low-wave phenomenon, which is transiently observed after a saturating light pulse given at steady-state. In both cases, the NPQ is oxygen-dependent. This NPQ is observed at external pH 6.0, but not at pH 7.5, which seems correlated with faster saturation of the PQ pool at pH 6.0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.