Abstract

Trichloroacetic acid (TCA), as a by-product of chlorination disinfection, is a highly carcinogenic chemical. Due to the widespread use of chlorination disinfection, it is critical to detect TCA in drinking water to decrease the incidence of disease. In this work, we developed an efficient TCA biosensor via electroenzymatic synergistic catalysis. The porous carbon nanobowls (PCNB) are prepared and wrapped by an amyloid like proteins formed by phase-transitioned lysozyme (PTL-PCNB), then, chloroperoxidase (CPO) is abounding to PTL-PCNB owing to its strong adhesion. The ionic liquid of 1-ethyl-3-methylimidazolium bromide (ILEMB) is co-immobilized on PTL-PCNB to from CPO-ILEMB@PTL-PCNB nanocomposite to assist the direct electron transfer (DET) of CPO. The PCNB plays two roles here. In addition, to increasing the conductivity, it serves as an ideal support for holding CPO; The CPO-ILEMB@PTL-PCNB nanocomposite modified electrode presents high efficiency for sensing TCA. Through electroenzymatic synergistic catalysis, a wide detection range of 33 μmol L−1 to 98 mmol L−1 can be achieved with a low detection limit of 5.9 μmol L−1, and high stability, selectivity as well as reproducibility, which ensures its potential practical applicability. This work provides a new platform for the electro-enzyme synergistic catalysis in one pot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call