Abstract

The steady-state activity of myeloperoxidase in the chlorination of monochlorodimedone at neutral pH was investigated. Using a stopped-flow spectrophotometer we were able to show that the enzymic activity at pH 7.2 rapidly declined in time. During the first 50–100 ms after addition of H2O2 to the enzyme, a turnover number of about 320 s−1 per haem was observed. However, this activity decreased rapidly to a value of about 25 s−1 after 1 s. This shows that in classical steady-state activity measurements, the real activity of the enzyme at neutral pH is grossly underestimated. By following the transient spectra of myeloperoxidase during turnover it was shown that the decrease in activity was probably caused by the formation of an enzymically inactive form of the enzyme, Compound II. As demonstrated before (Bolscher, B.G.J.M., Zoutberg, G.R., Cuperus, R.A. and Wever, R. (1984) Biochim. Biophys. Acta 784, 189–191) reductants such as ascorbic acid and ferrocyanide convert Compound II, which accumulates during turnover, into active myeloperoxidase. Activity measurements in the presence of ascorbic acid showed, indeed, that the moderate enzymic activity was higher than in the absence of ascorbic acid. With 5-aminosalicylic acid present, however, the myeloperoxidase activity remained at a much higher level, namely about 150 s−1 per haem during the time interval from 100 ms to 5 s after mixing. From combined stopped-flow/rapid-scan experiments during turnover it became clear that in the presence of 5-aminosalicylic acid the initially formed Compound II was rapidly converted back to native enzyme. Presteady-state experiments showed that 5-aminosalicylic acid reacted with Compound II with a K2 of 3.2·105 M−1·s−1, whereas for ascorbic acid a K2 of 1.5·104 M−1·s−1 was measured at pH 7.2. In the presence of 5-aminosalicylic acid during the time interval in which the myeloperoxidase activity remained constant, a Km for H2O2 at pH 7.2 was determined of about 30 μM at 200 mM chloride. In the absence of reductants the same value was found during the first 100 ms after addition of H2O2 to the enzyme. The physiological consequences of these findings are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call