Abstract

The obligate intracellular bacterium Chlamydia trachomatis is the causative agent of the most frequently reported bacterial sexually transmitted disease. Upon internalization into host cells, C. trachomatis remains within a membrane-bound compartment known as an inclusion, where it undergoes its developmental cycle. After completion of this cycle, bacteria exit the host cell. One mechanism of exit is lysis, whereby the inclusion and host cell rupture to release bacteria; however, the mechanism of lysis is not well characterized. A subset of C. trachomatis effectors, known as inclusion membrane proteins (Inc), are embedded within the inclusion membrane to facilitate host cell manipulation. The functions of many Inc proteins are unknown. We sought to characterize the Inc protein CTL0390. We determined that CTL0390 is expressed throughout the developmental cycle and that its C-terminal tail is exposed to the cytosol. To investigate the function of CTL0390, we generated a ctl0390 mutant complemented with ctl0390 on a plasmid. Loss of CTL0390 did not affect infectious progeny production but resulted in a reduction in lysis. Overexpression of CTL0390 induced premature lysis and host nuclear condensation, the latter of which could be reduced upon inhibition of the cGAS-STING DNA sensing pathway. Infection with the clt0390 mutant led to reduced Golgi translocation of STING, and chemical and genetic approaches to inactivate STING revealed that STING plays a role in lysis in a CTL0390-dependent manner. Together, these results reveal a role for CTL0390 in bacterial exit via lysis at late stages of the Chlamydia developmental cycle and through STING activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.