Abstract

We describe an enantioselective synthesis of (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-ol which is a key subunit of darunavir, a widely used HIV-1 protease inhibitor drug for the treatment of HIV/AIDS patients. The synthesis was achieved in optically pure form utilizing commercially available sugar derivatives as the starting material. The key steps involve a highly stereoselective substrate-controlled hydrogenation, a Lewis acid catalyzed anomeric reduction of a 1,2-O-isopropylidene-protected glycofuranoside, and a Baeyer-Villiger oxidation of a tetrahydrofuranyl-2-aldehyde derivative. This optically active ligand alcohol was converted to darunavir efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call