Abstract

In this paper we study the Chiral Separation Effect by means of first-principles lattice QCD simulations. For the first time in the literature, we determine the continuum limit of the associated conductivity using 2+1 flavors of dynamical staggered quarks at physical masses. The results reveal a suppression of the conductivity in the confined phase and a gradual enhancement toward the perturbative value for high temperatures. In addition to our dynamical setup, we also investigate the impact of the quenched approximation on the conductivity, using both staggered and Wilson quarks. Finally, we highlight the relevance of employing conserved vector and anomalous axial currents in the lattice simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call