Abstract

We give an elementary derivation of the chiral magnetic effect based on a strong magnetic field lowest-Landau-level projection in conjunction with the well-known axial anomalies in two- and four-dimensional space-time. The argument is general, based on a Schur decomposition of the Dirac operator. In the dimensionally reduced theory, the chiral magnetic effect is directly related to the relativistic form of the Peierls instability, leading to a spiral form of the condensate, the chiral magnetic spiral. We then discuss the competition between spin projection, due to a strong magnetic field, and chirality projection, due to an instanton, for light fermions in QCD and QED. The resulting asymmetric distortion of the zero modes and near-zero modes is another aspect of the chiral magnetic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.