Abstract

Using microfluidic technology to achieve integrated chip cooling is becoming a promising method to extend Moore law effective period. The thermal management is always critical for 3D integrated circuit design. Hot spots due to spatially non-uniform heat flux in integrated circuits can cause physical stress that further reduces reliability. The critical point for chip cooling is to use microfluidic cooling accurately on the hot spots. First, based on electro-wetting on dielectric, the paper presents an adaptive chip cooling technique using the digital microfluidics. Then, a two-plans 3D chip cooling model has been given with its working principle and characteristics. And single plan chip cooling model is presented, including its capacitance performance and models. Moreover, the dentate electrode is designed to achieve droplet continuing movement. Next, the ant colony optimization is adopted to get optimal route during electrode moving. Last, the experiments demonstrate the adaptive chip cooling technique proposed in this paper is effective and efficiency.

Highlights

  • 西北工业大学学报 Journal of Northwestern Polytechnical University https: / / doi.org / 10.1051 / jnwpu / 20193710107

  • A two⁃plans 3D chip cooling model has been given with its working principle and characteristics

  • The experiments demonstrate the adaptive chip cooling technique proposed in this paper is effective and efficiency

Read more

Summary

Introduction

西北工业大学学报 Journal of Northwestern Polytechnical University https: / / doi.org / 10.1051 / jnwpu / 20193710107 数字微流控器件对液滴的驱动是通过固液界面 的介电润湿原理实现的,介电润湿就是利用电压来 改变固液界面张力和接触角,从而控制液滴在固体 表面的亲疏水状态。 该原理可以用来驱动液滴运 动。 我们对液滴施加一个外加电压,在外加电压的 作用下,液滴会在固液界面积累一定的静电荷,由于 这些静电力作用在液体表面的分子上,会产生同性 的排斥力,抵消了一部分液滴分子表面的内聚力,从 而减小了液体表面的自由能和固液界面张力,固液 界面的接触角会随之减小。 这种现象称为介电润湿 ( EWOD:electro⁃wetting on dielectric) 。 疏水层的选择,可以实现固液界面从疏水到亲水的 变化。 研究人员常使用 Su⁃8(5 μm) 作为 EWOD 的 绝缘介质层,并且在电介质上涂覆薄层的特氟隆用 于疏水层。 实验表明,当电压值较低时,液滴的接触 角与电压的关系满足(3) 式,但是当电压增大到一 定的程度后,接触角会出现饱和现象,即接触角不再 随电压绝对值的增大而减小,此外,当电压增大到超 过芯片的额定电压时,会将介质层击穿,器件将不能 工作。 与双平面冷却器件相比,单平面设计导致相对 较低的流动摩擦( 仅由底板产生) ,因此可以实现低 电压 EWOD 操作。 优化的电极设计对于实现即时 和低电压液滴驱动至关重要,为了促进液滴的连续 传输,设计了具有互锁图的共面控制电极,如图 3 所示: 图 3 单平面数字微流体冷却模型 Ling salesman problem) [8] 类似,我们将 TSP 模型应

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call