Abstract

We present the design, implementation and performance of a digital backend constructed for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) that uses accelerated computing to observe radio pulsars and transient radio sources. When operating, the CHIME correlator outputs 10 independent streams of beamformed data for the CHIME/Pulsar backend that digitally track specified celestial positions. Each of these independent streams are processed by the CHIME/Pulsar backend system which can coherently dedisperse, in real-time, up to dispersion measure values of 2500 pc/cm$^{-3}$ . The tracking beams and real-time analysis system are autonomously controlled by a priority-based algorithm that schedules both known sources and positions of interest for observation with observing cadences as small as one day. Given the distribution of known pulsars and radio-transient sources, the CHIME/Pulsar system can monitor up to 900 positions once per sidereal day and observe all sources with declinations greater than $-20^\circ$ once every $\sim$2 weeks. We also discuss the science program enabled through the current modes of data acquisition for CHIME/Pulsar that centers on timing and searching experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.