Abstract

In a previous work, a straighforward canonical approach to the source-free quantum Chern—Simons dynamics was developed. It makes use of neither gauge conditions nor functional integrals and needs only ideas known from QCD and quantum gravity. It gives Witten’s conformal edge states in a simple way when the spatial slice is a disc. Here we extend the formalism by including sources as well. The quantum states of a source with a fixed spatial location are shown to be those of a conformal family, a result also discovered first by Witten. The internal states of a source are not thus associated with just a single ray of a Hilbert space. Vertex operators for both abelian and nonabelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. We also argue in favor of a similar nonabelian result. The spin-statistics theorem is established for Chern-Simons dynamics even though the sources are not described by relativistic quantum fields. The proof employs geometrical methods which we find are strikingly transparent and pleasing. It is based on the research of European physicists about “fields localized on cones.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.