Abstract
AbstractWe study the Chern-Ricci flow, an evolution equation of Hermitian metrics, on a family of Oeljeklaus–Toma (OT-) manifolds that are non-Kähler compact complex manifolds with negative Kodaira dimension. We prove that after an initial conformal change, the flow converges in the Gromov–Hausdorff sense to a torus with a flat Riemannianmetric determined by the OT-manifolds themselves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.