Abstract

The internal energy available in vibrationally excited H2 molecules can be used to overcome or diminish the activation barrier of various chemical reactions of interest for molecular astrophysics. In this article we investigate in detail the impact on the chemical composition of interstellar clouds of the reactions of vibrationally excited H2 with C+, He+, O, OH, and CN, based on the available chemical kinetics data. It is found that the reaction of H2 (v>0) and C+ has a profound impact on the abundances of some molecules, especially CH+, which is a direct product and is readily formed in astronomical regions with fractional abundances of vibrationally excited H2, relative to ground state H2, in excess of 10^(-6), independently of whether the gas is hot or not. The effects of these reactions on the chemical composition of the diffuse clouds zeta Oph and HD 34078, the dense PDR Orion Bar, the planetary nebula NGC 7027, and the circumstellar disk around the B9 star HD 176386 are investigated through PDR models. We find that formation of CH+ is especially favored in dense and highly FUV illuminated regions such as the Orion Bar and the planetary nebula NGC 7027, where column densities in excess of 10^(13) cm^(-2) are predicted. In diffuse clouds, however, this mechanism is found to be not efficient enough to form CH+ with a column density close to the values derived from astronomical observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.