Abstract

The chemistry of ethylene adsorbed on a thin MoAl layer grown in ultrahigh vacuum on a thin alumina film is studied using a combination of temperature-programmed desorption and X-ray, Auger and reflection absorption infrared spectroscopies. Both di-σ-bonded and a small proportion of π-bonded ethylene are found, where the di-σ-bonded ethylene has a σ/π parameter of ∼0.8 and a heat of adsorption of ∼70 kJ/mol. The ethylene self-hydrogenates to yield ethane and a small amount of methane is detected. The surface hydrogenation activation energy of di-σ-bonded ethylene is ∼65 kJ/mol, while the π-bonded species hydrogenates more easily. Adsorbed ethyl species grafted onto the surface by decomposing ethyl iodide predominantly undergo β-hydride elimination to yield ethylene. Ethyl species hydrogenate to ethane at a lower temperature than does di-σ-bonded ethylene implying that addition of hydrogen to adsorbed ethylene is slower than the rate of ethyl hydrogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.