Abstract
We report high-sensitivity millimetre observations of several molecular species (13CO, HCN, HNC, CN, HCO+ and N2H+) in a sample of compact planetary nebulae. Some species such as HCO+ and CN are particularly abundant compared to envelopes around AGB stars or even interstellar clouds. We have estimated the following average values for the column densities ratios: , , and . Thus, the chemical composition of the molecular envelopes in these compact PNe appears somewhat intermediate between the composition of proto-PNe (such as CRL 2688 or CRL 618) and well evolved PNe (such as the Ring, M4–9, or the Helix). From observations of the CO isotopomers, we have estimated that the 12C/13C ratio is in the range . These values are below those expected from standard asymptotic giant branch models and suggest non-standard mixing processes. The observed molecular abundances are compared to very recent modelling work, and we conclude that the observations are well explained, in general terms, by time-dependent gas-phase chemical models in which the ionization rate is enhanced by several orders of magnitude with respect to the average interstellar value. Thus, our observations confirm that the chemistry in the neutral shells of PNe is essentially governed by the high energy radiation from the hot central stars. The complexity of the chemical processes is increased by numerous factors linked to the properties of the central star and the geometry and degree of clumpiness of the envelope. Several aspects of the PN chemistry that remains to be understood are discussed within the frame of the available chemical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.