Abstract

Coronene (C24H12) adsorption on the clean Si(001)-2 x 1 surface was investigated by scanning tunneling microscopy and by density-functional calculations. The coronene adsorbed randomly at 25 degrees C on the surface and did not form two-dimensional islands. The scanning tunneling microscopy measurements revealed three adsorption sites for the coronene molecule on the Si(001) surface at low coverage. The major adsorption configuration involves coronene bonding to four underlying Si atoms spaced two lattice spacings apart in a dimer row. The two minor adsorption configurations involve asymmetrical bonding of a coronene molecule between Si dimer rows and form surface species with a mirror plane symmetry to their chiral neighbor species. The two minor bonding arrangements are stabilized by a type-C defect on the Si(001) surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.