Abstract

In a previous paper the analysis of a fuel-rich, ф =1.60, methane flame using a four-stage molecular beam inlet to a quadrupole mass spectrometer was described. The results were used to investigate the chemical structure of the primary reaction zone of the flame. In this paper, results from a richer flame, ф = 2.00, are presented and analysed. This premixed, laminar, flat flame had the following composition (all molar percentages) and conditions: 35.0% (CH 4 ), 35.0% (O 2 ), 30% (Ar); pressure = 8.00 kPa; cold-gas velocity at 293 K = 0.47 m s -1 . Mole fraction profiles through each flame were measured for a large number of stable and radical species, and those for the ф = 2.00 flame are presented in this paper and are compared with the results from the ф = 1.60 flame published earlier. Analysis and discussion in the present paper concentrates on the secondary reaction zone of both fuel-rich flames. Comparison of the profiles shows that hydrocarbon species survive the primary reaction zone in increasing concentrations as ф increases. It is shown that the reaction H + O 2 ⇌ OH + O (21, -21 ) does not achieve the partial equilibrium condition that is found in leaner flames, although the remaining bimolecular reactions of the H 2 -O 2 system do so. The competition between various species for the H, O and OH radicals is analysed using a convenient parameter which allows comparison of reaction rates and which has been called the 'characteristic reaction time’, r . It is concluded that the direct cause of the inability of (21, -21) to achieve partial equilibrium is the removal of O atoms from the available pool of H, O and OH radicals by reaction with hydrocarbon species, particularly C 2 H 2 . The rate of decrease of the H atom concentration in the secondary reaction zone is shown to be too fast to be the result of termolecular recombination reactions; it is suggested that the cause is the rapid response of the fast bimolecular reactions of the H 2 -O 2 system to the removal of O atoms via OH + H → O + H 2 , (-22) OH + OH → O + H 2 O (-23) thus reducing the concentrations of H and OH radicals. This mechanism explains the reduction in the excesses of the H, O and OH radicals above their thermodynamic equilibrium levels that is observed with increasing ф . It is concluded that it is possible to view a rich flame as consisting entirely of an extended primary reaction zone in which the concentrations of the H, O and OH radicals are controlled by bimolecular reactions throughout.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call