Abstract

Fe–N–C materials have emerged as promising alternatives to precious metals for oxygen reduction reaction/oxygen evolution reaction (ORR/OER). In this study, a strategy is presented to investigate the influence of different chemical states of iron species in Fe–N–C materials on their electrocatalytic performance. Three Fe–N–C catalysts, containing either zero-valent Fe or Fe3O4 nanoparticles, are synthesized using acid pickling, high-speed centrifugation and ultrasound-assisted hydrothermal methods, respectively. The findings manifest that the chemical state of iron significantly affects the electrocatalytic activity of Fe–NX active sites, namely zero-valent Fe enhancing Fe–NX activity while Fe3O4 weakening its activity. Notably, the Fe@FeNC catalyst containing only zero-valent iron, demonstrates the only 0.621 V potential difference between the ORR half-wave potential and the OER potential at 10 mA cm−2. Furthermore, the rechargeable Zn–air battery assembled with Fe@FeNC as the air cathode exhibits a remarkable peak power density of 179.0 mW cm−2, excellent cycling stability over 210 h (with a cycle frequency of one every 10 min), and the minimal voltage gap of 0.710 V. These results reveal the significance of different chemical states of metal-based nanoparticles in Fe–NX activity of Fe–N–C catalysts and offer insights into the rational design of electrocatalysts with exceptional activity and versatile applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.