Abstract

We present a new chemical evolution model for the Galaxy that assumes three main infall episodes of primordial gas for the formation of halo, thick and thin disk, respectively. We compare our results with selected data taking into account NLTE effects. The most important parameters of the model are (i) the timescale for gas accretion, (ii) the efficiency of star formation and (iii) a threshold in the gas density for the star formation process, for each Galactic component. We find that, in order to best fit the features of the solar neighbourhood, the halo and thick disk must form on short timescales (~0.2 and ~1.25 Gyr, respectively), while a longer timescale is required for the thin-disk formation. The efficiency of star formation must be maximum (10 Gyr-1) during the thick-disk phase and minimum (1 Gyr-1) during the thin-disk formation. Also the threshold gas density for star formation is suggested to be different in the three Galactic components. Our main conclusion is that in the framework of our model an independent episode of accretion of extragalactic gas, which gives rise to a burst of star formation, is fundamental to explain the formation of the thick disk. We discuss our results in comparison to previous studies and in the framework of modern galaxy formation theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.