Abstract

We re-examine the recombination/collisional emission line (RL/CEL) nebular abundance discrepancy problem in the light of recent high-quality abundance determinations in young stars in the Orion star-forming region. We re-evaluate the CEL and RL abundances of several elements in the Orion nebula and estimate the associated uncertainties, taking into account the uncertainties in the ionization correction factors for unseen ions. We estimate the amount of oxygen trapped in dust grains for several scenarios of dust formation. We compare the resulting gas+dust nebular abundances with the stellar abundances of a sample of 13 B-type stars from the Orion star-forming region (Ori\,OB1), analyzed in Papers I and III of this series. We find that the oxygen nebular abundance based on recombination lines agrees much better with the stellar abundances than the one derived from the collisionally excited lines. This result calls for further investigation. If the CEL/RL abundance discrepancy were caused by temperature fluctuations in the nebula, as argued by some authors, the same kind of discrepancy should be seen for the other elements, such as C, N and Ne, which is not what we find in the present study. Another problem is that with the RL abundances, the energy balance of the Orion nebula is not well understood. We make some suggestions concerning the next steps to undertake to solve this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.