Abstract

The objective of the study was to (1) characterize and compare the chemical composition at the surface, subsurface and in the bulk of thin plastic films used for portosystemic shunt attenuation in their native state and after plasma exposure. (2) Assess the presence, concentration and location of irritant compounds (e.g dicetyl phosphate) within the films.Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), X-ray Photoelectron Spectroscopy (XPS) and dynamic Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) were used to analyze thirteen thin plastic films. Sample thickness was visualized and measured using Scanning Electron Microscopy (SEM). Sample thicknesses were compared using a one-way ANOVA.XPS reported low phosphorous concentrations (surrogate marker of dicetyl phosphate) between 0.01 and 0.19% wt at the sample surfaces (top 10 nm). There were significant differences between film thicknesses (P < .001) observed by SEM. The ATR-IR and ToF-SIMS identified four distinct surface and bulk chemical profiles: 1) Cellophane, 2) Polypropylene, 3) Modified Cellophane, and 4) Unique. Following plasma immersion for 6 weeks, samples showed little change in film thickness or chemical composition.This study confirmed that films used to attenuate portosystemic shunts were commonly not pure cellophane, with significant variations in surface and bulk chemistry. Suspected irritant compounds were not readily identifiable in significant proportions. Pronounced variability existed in both the thickness and chemical composition of these films (surface vs. bulk). The present findings lead to a legitimate question about the reproducibility of shunt occlusion when using thin plastic films from different origins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.