Abstract

The influence of strain history on the oxidation and mechanical degradation of an aluminide coating was examined by induction heating of stepped-disk specimens. The coating was applied to a single-crystal Ni-base superalloy (RENE N4) by pack aluminization. The anisotropic elasticity of the single-crystal substrate allowed simultaneously subjecting the aluminide coating to different strain amplitudes. Two distinct modes of coating degradation were observed for tests performed in air between temperature limits of 520 °C and 1080 °C: scalloping (spatially periodic surface oxidation and roughening) and cracking. The degree of scalloping became more severe as the compressive strain imposed on the coating was increased. Six thousand cycles between peak strains of -0.20 and 0.007 pct produced uniform surface oxidation, without scalloping, whereas 6000 cycles between peak strains of -0.56 and 0.01 pct gave oxidation and scalloping to 80 pct of the coating thickness. Cracks along coating grain boundaries were observed after 6000 cycles between peak strains of -0.45 and 0.16 pct. The depth of scalloping was found to correlate approximately with peak compressive substrate strain. Based on this correlation, a mechanism for scallop initiation and growth involving cyclic breakdown of the surface oxide and irreversible cyclic creep of the coating is proposed. Cracking along coating grain boundaries is attributed to tensile strains applied below the transition temperature of the coating. The results obtained from this study indicate that cyclic strain history is an important variable which should be included when determining the oxidation rate of coatings and alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call