Abstract

Density functional theory was employed to investigate the chemical activity of metal carbide nanoparticles. The present calculations indicate that M(8)C(12) (M=Ti, V, Mo) nanoparticles exhibit a unique behavior compared to metal [M(001)] and metal carbide surfaces [M(2)C(001) and MC(001)]. It is found that the nanoparticles behave very reactive in spite of the high carbon concentration in some reactions, while surprisingly inert in other cases. Our study reveals that the unexpected activity is the result of the interplay of shifts in the metal d-bands and distortions in the geometry of the metal carbide nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.