Abstract
We have obtained multi-slit spectroscopic observations from 3700A to 9200A with LRIS at the Keck I telescope for 31 HII regions in the disk of the Andromeda galaxy (M31), spanning a range in galactocentric distance from 3.9 kpc to 16.1 kpc. In 9 HII regions we measure one or several auroral lines ([OIII]4363, [NII]5755, [SIII]6312, [OII]7325), from which we determine the electron temperature (Te) of the gas and derive chemical abundances using the 'direct Te-based method'. We analyze, for the first time in M31, abundance trends with galactocentric radius from the 'direct' method, and find that the Ne/O, Ar/O, N/O and S/O abundance ratios are consistent with a constant value across the M31 disc, while the O/H abundance ratio shows a weak gradient. We have combined our data with all spectroscopic observations of HII regions in M31 available in the literature, yielding a sample of 85 HII regions spanning distances from 3.9 kpc to 24.7 kpc (0.19 - 1.2 R25) from the galaxy center. We have tested a number of empirical calibrations of strong emission line ratios. We find that the slope of the oxygen abundance gradient in M31 is -0.023+/-0.002 dex/kpc, and that the central oxygen abundance is in the range 12+log(O/H) = 8.71 - 8.91 dex (i.e. between 1.05 and 1.66 times the solar value, for 12+log(O/H)_solar=8.69), depending on the calibration adopted. The HII region oxygen abundances are compared with the results from other metallicity indicators (supergiant stars and planetary nebulae). The comparison shows that HII region O/H abundances are systematically ~0.3 dex below the stellar ones. This discrepancy is discussed in terms of oxygen depletion onto dust grains and possible biases affecting Te-based oxygen abundances at high metallicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.