Abstract

Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348] showed that the Chazy XII equation $y'''- 2yy''+3y'^2 = K(6y'-y^2)^2$, $K \in \mathbb{C}$, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting this geometric connection it is shown that the Chazy XII solution, for certain values of $K$, can be expressed as $y=a_1w_1+a_2w_2+a_3w_3$ where $w_i$ solve the generalized Darboux-Halphen system. This relationship holds only for certain values of the coefficients $(a_1,a_2,a_3)$ and the Darboux-Halphen parameters $(\alpha, \beta, \gamma)$, which are enumerated in Table 2. Consequently, the Chazy XII solution $y(z)$ is parametrized by a particular class of Schwarz triangle functions $S(\alpha, \beta, \gamma; z)$ which are used to represent the solutions $w_i$ of the Darboux-Halphen system. The paper only considers the case where $\alpha+\beta+\gamma<1$. The associated triangle functions are related among themselves via rational maps that are derived from the classical algebraic transformations of hypergeometric functions. The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential system for a triple $(\hat{P}, \hat{Q},\hat{R})$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.