Abstract

A charge transfer hydrogen bonded complex was prepared and experimentally explored in an acetonitrile (ACN) medium between the proton acceptor (electron donor) 2, 3-Diamino-5-bromopyridine and the proton donor (electron acceptor) chloranilic acid. The stoichiometry of the charge transfer complex is 1:1. The Benesi-Hildebrand equation is used to calculate the molar absorptivity (εCT), association constant (KCT) and other spectroscopic physical characteristics. The solid compound was synthesized and studied using several spectroscopic methods. The presence of charge and proton transfers in the resultant complex was supported by 1H NMR, FT-IR and SEM-EDX investigations. The complex DNA binding ability was investigated using electron absorption spectroscopy, and the CT complex binding mechanism is intercalative. The intrinsic binding constant (Kb) value is 5.2 × 106M−1. The good binding affinity of the CT complex makes it potentially suitable for usage as a pharmaceutical in the future. Molecular docking calculations have been performed between CT complex and DNA (ID = 1BNA) to study the CT-DNA interaction theoretically. To corroborate the experimental findings, calculations based on DFT were carried out in the gas and PCM analysis where the existence of charge and hydrogen transfers. Finally, good agreement between experimental and theoretical computations was observed confirming that the basis set used is appropriate for the system under examination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call