Abstract

This study combines tree-ring and charcoal data to explore possible drivers of the charcoal record and its spatial variation in a boreal Norwegian forest landscape. Peat and mineral soil samples were collected in a multiple site sampling approach and the amount of charcoal in the peat is related to fire history, Holocene climate variation, major shifts in the vegetation composition, and fuel availability. Dendrochronologic dating was used to reveal the fire history over the last 600 years with spatial and temporal accuracy, and AMS radiocarbon dating of 20 peat columns and their charcoal records from four peatlands was used to elucidate the fire history over the Holocene. The average amount of charcoal was about 2.5 times higher in the mineral soil than in the peat (270 versus 100 g/m2, respectively), and there were considerable between- and within-site variations. There was no relationship between the age of a given peatland and its content of charcoal, nor between the amount of charcoal in a given peatland and in the neighboring mineral soil. Although most of the charcoal mass in the peatlands was found in parts of the peat columns originating from relatively warm climatic periods and from the period before the local establishment of Norway spruce ( Picea abies), charcoal accumulation rates (per 1000 yr) were higher during cold climatic periods and similar before and after spruce establishment. Recent fires showed up to a low degree in the peat columns. On fine spatial scales (1–10 m), fuel quality and distribution together with fire behaviour throughout millennia are likely to be responsible for variations in the charcoal record. On the landscape scale (100–1000 m), the charcoal records were site-specifically idiosyncratic, presumably due to topography, distribution of fire breaks and fuel types, and human land use, coupled with long-term variations inherent in these factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.