Abstract

Objective: The objective of this study (ARS-TPGS-Lipo) was to enhance the stability, encapsulation efficiency (EE), improve AUC, circulation time and liver targeting of ARS-TPGS-Lipo.Methods: ARS-TPGS-Lipo was prepared by thin-film dispersion method and characterized by TEM. The EE, in vitro release and stability of ARS-TPGS-Lipo were detected by HPLC and UV. In addition to the safety evaluation, the pharmacokinetics and tissue distribution studies were also carried out after i.v. administration.Results: The size, PDI, zeta potential, and EE of ARS-TPGS-Lipo were 126.7 ± 9.9 nm, 0.182 ± 0.016, −10.1 ± 1.43 mV, and 78.8 ± 1.89%, respectively. ARS-TPGS-Lipo showed the slow-release effect in vitro release experiments. The AUC of ARS in the ARS-TPGS-Lipo group was 7.51 times higher than in the ARS group after i.v. administration and the circulation time was significantly prolonged. The tissue distribution results showed the components of artesunate and its metabolism DHA of the ARS-TPGS-Lipo group were much higher in liver than the ARS-Lipo group.Conclusion: ARS-TPGS-Lipo was prepared successfully, which had the smaller vesicles size with a better PDI, better stability, higher EE, and slow-release. The results of safety evaluation indicated that ARS-TPGS-Lipo had no hematotoxicity and hepatorenal toxicity. The pharmacokinetic studies indicated ARS-TPGS-Lipo had higher AUC, longer circulation time and better liver targeting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.